

radon

Stable	Atomic mass	Mole
isotope		fraction
(none)		

Half-life of redioactive isotope

Less than 1 second

Important applications of stable and/or radioactive isotopes

Isotopes in the environment

- 1) ²²²Rn can be used as a tool to date groundwater when used in combination with other isotopes. Sultankhodzev et al. (1971) related ²²²Rn to uranium decay and then used He/Rn and Xe/Rn ratios to date groundwater.
- 2) Both ²²⁰Rn and ²²²Rn are used to study underground environmental as well as atmospheric gaseous transport processes.
- 3) An increase in ²²²Rn emissions has been suggested as a way to predict earthquakes since the increased surface area due to rocks cracking in the second stage of earthquake progression allows for more radon exposure to the environment.

4) The interaction of radon with streams and rivers allows it to be commonly used as a tracer in groundwater studies. ²²²Rn has a short residence time in streams and river channels, which therefore leads to radon loss. As a result, if an area of a stream or river has a high concentration of radon, it will mean that there are local groundwater inputs. Kraemer and Genereux (1997) provide a detailed discussion of ²²²Rn mixing models and the use of ²²²Rn to determine areas of ground water discharge to streams.

Figure 1: Air-water equilibrator, which strips radon out of water and into the gas phase so it can be used as a groundwater tracer.